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Abstract
Mechanics of fluid membranes may be described in terms of the concepts
of mechanical deformations and stresses or in terms of mechanical free-
energy functions. In this paper, each of the two descriptions is developed
by viewing a membrane from two perspectives: a microscopic perspective, in
which the membrane appears as a thin layer of finite thickness and with highly
inhomogeneous material and force distributions in its transverse direction, and
an effective, two-dimensional perspective, in which the membrane is treated
as an infinitely thin surface, with effective material and mechanical properties.
A connection between these two perspectives is then established. Moreover,
the functional dependence of the variation in the mechanical free energy of the
membrane on its mechanical deformations is first studied in the microscopic
perspective. The result is then used to examine to what extent different, effective
mechanical stresses and forces can be derived from a given, effective functional
of the mechanical free energy.

PACS numbers: 68.15.+e, 83.10.−y, 87.16.Dg

1. Introduction

Mechanics of fluid, lipid-bilayer-based membranes has been one of the most important topics
in membrane physics during the past three decades [1, 2]. It contains much richer physics than
that of conventional fluid–fluid interfaces, due to the fact that the concept of surface tensions
is, under most physically relevant situations, not sufficient to describe mechanical states of the
membranes, unlike in the case of conventional fluid–fluid interfaces. Additional mechanical
quantities to describe their resistance towards bending deformation have to be included in
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Figure 1. A schematic sketch of the membrane–fluid system under our consideration. Part (a)
depicts the interfacial region in the real system, showing a membrane composed of bilayer-forming
lipids and transmembrane proteins in contact with two fluids containing small solutes. Part (b)
illustrates the representation of the interfacial region in the corresponding Gibbs model system.

(This figure is in colour only in the electronic version)

the description as well [3, 4]. Understanding of the equilibrium shapes of red-blood cells
[5] and giant, artificial lipid-bilayer vesicles [3, 6–8] relies on a well-defined description of
the mechanical properties of the relevant membranes, so do the applications of membrane
mechanics in experimental techniques such as the micromechanical manipulation technique
[9, 10] and the sensitive force-measurement technique based on the mechanics of cells or
vesicles [11–13]. Recently, descriptions of membrane mechanics have also been employed
in the investigation of surface-induced forces between membrane-adsorbed or membrane-
embedded colloidal particles [14, 15].

Descriptions of mechanics of fluid membranes are most often formulated from the point of
view of elastic shell theory or an effective, two-dimensional perspective, where the membrane
is treated as an infinitely thin surface. A description is given either in terms of surface stresses
and bending moments, expressed as functions of the deformations, or in terms of mechanical
work or free energy associated with the deformations [1, 16]. A state of mechanical equilibrium
of the membrane, or its equilibrium shape, can then be determined by setting up equations
of balance for the stresses and for the bending moments, if they are given. Obviously,
those equations correspond to the conservations of linear momentum and angular momentum,
respectively [1, 16]. Alternatively, the problem of finding equilibrium shapes of the membrane
can be approached, more directly, by applying a variational principle to derive the equations of
mechanical equilibrium from the mechanical free energy [6, 8, 17, 18]. Previous works have
shown that these two approaches can be reconciled with each other [19, 20]. In particular, the
work presented in [20] based on the use of Nöther’s theorem provides a very general, albeit
somewhat abstract, argument regarding why the two approaches are equivalent.

One of the goals of this paper is to give a more mechanical—therefore, more
experimentally relevant—account than that given in [20], of why the two approaches of
obtaining equations of membrane mechanical equilibrium are equivalent. For this purpose,
general descriptions of the mechanics and thermodynamics of a fluid membrane will be
developed by viewing the membrane from two different perspectives. One is a microscopically
realistic perspective, depicted in figure 1(a), where the membrane has a highly inhomogeneous
distribution of matter in its transverse direction. This will often be referred to as the
microscopically viewed system or the microscopic model. The other perspective is an effective,
or idealized, one, illustrated in figure 1(b), where the membrane is modelled as an infinitely
thin surface, which will be called the dividing surface, with the bulk solvent filling all of



Descriptions of membrane mechanics from microscopic and effective two-dimensional perspectives 10325

the space on the two sides of the surface. This model will also be called the Gibbs system
or Gibbs picture, as effective, excess mechanical quantities will be assigned to this surface
following the idea of Gibbs’ [21]. Those excess quantities are defined by the constraints
of mechanical equivalence between the two different perspectives. In other words, the total
mechanical forces and torques obtained from integrating the linear stress and the bending
moment over a surface which traverses the membrane surface and has a sufficiently large
transverse dimension must be the same in the two perspectives. If the transverse extensions
of the surface of integration into the two solvent regions on the two sides of the membrane
are denoted by ε+ and ε−, the term ‘sufficiently large transverse dimension’ refers to the
following requirement: that ε+ and ε− be judiciously chosen such that at these distances from
the dividing surface the thermomechanical properties of the solvent must be indistinguishable
from those of a homogeneous bulk solvent under the same thermodynamic conditions.

A second goal of the paper is to add to the canonical descriptions [1, 16, 20] descriptions
of physical situations where applied external forces that act, or do work, on membranes are not
localized on the corresponding dividing surfaces. An experimentally relevant example of such
situations is the following [22, 23]: an external electric field is applied to a membrane system,
induces a dipole moment in the membrane and through its coupling to the dipole moment
exerts a mechanical torque on the membrane. The work of such a torque will depend on
membrane deformations and, therefore, contribute to the mechanics of the membrane. Such
situations have not been considered in the earlier works [1, 16, 20].

A third goal of the paper is to address an issue that arises from the exercise of deriving
mechanical stresses from a given thermomechanical free-energy functional. It turns out that
mechanical stresses obtained by this way inevitably contain in their expressions some degree of
arbitrariness. A similar problem has a long history in classical field theory [24]. In this paper,
the origin of the arbitrariness is investigated and the issue of to what extent this arbitrariness
can be eliminated in physically meaningful or relevant ways is discussed. This part of our
study should facilitate the task of determining states of mechanical equilibrium of membranes.

It should be noted that even though we use the word membrane throughout the paper, then
the theory is general enough also to apply to for instance the interface of two coexisting fluids.
However, since a membrane is not necessarily situated at such an interface, it can for instance
be freely floating, and since the prime example that we have in mind is a lipid-bilayer-based
membrane, we will use the word membrane throughout the text.

The outline of the paper will be as follows. In section 2, the Gibbs description of the
mechanics of fluid membranes will be introduced. In section 3, a description based on the
corresponding microscopic view of the membrane systems is established and is then connected
to the Gibbs description. This connection is then used in section 4 to elucidate how the
mechanical stresses in the Gibbs description are related to the functional variation of a general
mechanical free energy under shape deformations and to identify the issue that the mechanical
stresses derived from the free-energy variation are not uniquely determined. This issue is then
addressed in section 5. A conclusion is given in section 6, and it is finally followed by two
appendices. The first of these, appendix A, is a brief summary of the differential geometry
of surfaces. It is included mostly to have a place to consult for the notation and conventions
used.

2. The Gibbs description of membrane mechanics

In this section, we will develop a description of membrane mechanics based on viewing from
an effective, or idealized, perspective a system of a membrane together with the fluids that
surround it. In this perspective, the whole system is approximated by a dividing surface of
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zero thickness together with two regions of bulk fluids, the behaviour of which are assumed
not to be affected by the presence of the membrane. We refer to a membrane system modelled
in this way as the Gibbs model or the Gibbs system. The mechanics of the Gibbs system is
then described by a set of effective surface stresses—defined on the dividing surface only—
together with those known of the bulk fluids. We will first focus on developing the concept of
effective surface stresses and then give a full description of the mechanics of the Gibbs system.
In correspondence with laws of conservation of linear and angular momenta fundamental to
mechanics, we will classify mechanical stresses into linear stress tensors and angular stress
tensors. We will develop the concept of the linear stress tensors from the more fundamental
concept of forces, and similarly, the concept of the angular stress tensors from the concept of
torques.

2.1. Forces and linear stresses

Similar to mechanical stress tensors in conventional material systems, linear stresses in a
membrane are employed to describe the forces acting on an element of the membrane by the
rest of the membrane with which it is in contact. The nature of such contact forces is that they
are boundary forces. Denoting the element of the membrane under consideration by �, we
can define a vector, T (ν) = T (ν)(ξ

1, ξ 2), to be the force per unit length acting on the boundary
of �. The vector ν = ναtα represents the unit vector which points in the outward normal
direction to the boundary element local to point (ξ 1, ξ 2) and which lies tangentially in the
membrane plane. Clearly, the total force on � arising from the boundary forces, F � , is then
given by integrating T (ν) along the boundary of �,

F � =
∫

∂�

ds T (ν), (1)

where ds is the arc length along the boundary ∂�.
Obviously, T (ν) depends on the orientation of ν. This dependence can be shown to be

T (ν) = T ανα, (2)

where the two constituting space force vectors, T α , which also form surface vectors, are
independent of ν. We have for completeness given a derivation of equation (2) using a
standard argument [25] in appendix B. Readers willing to accept the result may skip that
appendix.

It should be clear that T α describes the non-trivial local distribution of forces, and it will
therefore be identified as the linear surface stress (tensor) in the membrane. It will often be
used later in the form of its components in a decomposition of the following form:

T α ≡ T αβtβ + T α
n n, (3)

where its tangential components, T αβ , constitute a surface tensor of rank 2, and its transverse
components, T α

n , form a surface vector.
Using equation (2) we can now rewrite force F � :

F � =
∫

∂�

ds T ανα =
∫

�

dADαT α, (4)

where Gauss’s law has been used for the second equality sign. From this we see that a surface
density of force can be associated with the stress tensor through its covariant divergence:

f = DαT α. (5)

If f is non-zero in equilibrium, then an ‘external’ force acting on the membrane to balance it is
necessarily involved. Such an external force can, for example, result from the stresses exerted
on the membrane by the surrounding bulk fluids. We will return to this point in section 3.
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With the help of the components of the linear stress tensor, we can decompose, T (ν),
the force per unit length acting on a membrane element through one of its boundary-curve
elements with outward normal ν, into three components,

T (ν) = Tµν + Ts(n × ν) + QTn. (6)

These three components have direct physical interpretations: Tµ ≡ Tαβνανβ can be identified
as the surface tension acting on the boundary element, Ts = Tαβνανγ εγβ can be identified as
the shear tangential to the boundary and QT = T α

n να is transverse shear normal to the surface.
These concepts have already been introduced and used in previous seminal work on membrane
mechanics [1].

2.2. Torques and angular stresses

Following a line of reasoning similar to that sketched in the preceding subsection, we can also
develop the concept of angular stresses from the concept of torques. Considering the same
local element, �, of the membrane, with its boundary curve ∂�, we can define two densities
of torque: Ω(ν), the torque per unit length acting by the part of the membrane neighbouring to
� on an element of the boundary curve with ν as its outward-pointing normal vector, and τ ,
the total torque per unit area resulted from the torques distributed along the boundary. In the
rest of the paper, it will be assumed implicitly that any torque referred to is calculated with
respect to the origin of the global coordinate system unless specified otherwise. We have,
therefore, ∫

�

dA τ =
∫

∂�

ds Ω(ν). (7)

We can also establish the following two equations:

Ω(ν) = Ωανα (8)

and

τ = DαΩα, (9)

based on the same arguments that have led to equations (2) and (5). Obviously, the space-
surface vector quantity, Ωα , is the counterpart of T α in the context of angular momentum and
will therefore be called the angular stress tensor.

To make clear the physical content of the angular stress tensor, we decompose it into two
parts. One is the angular stress generated by the action of the linear stress, which is given by
R × T α . The other, defined by

Nα = Ωα − R × T α, (10)

represents a contribution which is non-trivial. Its origin lies in the fact that the real physical
system of a fluid membrane is not an infinitely thin surface and that the force distribution
along its transverse dimension is inhomogeneous. This point will be discussed more in the
next section. We will call Nα the internal angular stress tensor in reference to its origin. In
correspondence with the decomposition of Ωα we divide the surface density of the torque, τ ,
into two parts:

τ = R × f + τ int. (11)

The first part describes the contribution from the surface density of the force and the other
part, which can easily be rewritten as

τ int ≡ τ − R × f = DαNα + tα × T α, (12)

will be referred to as the internal torque.
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Figure 2. A sketch of the cell, or volume element, �̄. B̄1 and B̄2 refer to side surfaces of the cell.

2.3. Mechanical stresses in the Gibbs system

Having developed in a systematic way the concepts of surface linear stress tensor and angular
stress tensor, we can formulate precise expressions of the corresponding three-dimensional
stresses that describe the force and torque distributions across the whole Gibbs system
consisting of the dividing surface and the bulk fluids.

To do that, we consider a three-dimensional cell �̄, as shown in figure 2, which includes
the local element of the dividing surface �, but which has sufficiently large extension in the
transverse direction. The four side faces of cell �̄, which are transverse to � are labelled as
B̄1

± and B̄2
±, are parametrized mathematically by

B̄α
± = {R(ξ̄ 1, ξ̄ 2) + hn(ξ̄ 1, ξ̄ 2) | ξ 3−α − 
ξ 3−α/2 � ξ̄ 3−α � ξ 3−α + 
ξ 3−α/2,

ξ̄ α = ξα ± 
ξα/2,−ε− � h � ε+}. (13)

The intersections of B̄α
± with the dividing surface, Bα

±, hence constitute the boundary, ∂�, of
the dividing surface element �.

To formulate mathematically concise expressions of the relevant mechanics quantities of
the whole Gibbs system, we introduce two Heaviside step functions, which are defined as
θ±(r) ≡ θ(±φ(r)). The scalar function, φ(r), appearing in the definition is defined to be
such that it is zero on the dividing surface, positive in the bulk region that n points into and
negative in the other. We also use two three-dimensional stress tensors, T̄±, to represent the
thermomechanical properties of the bulk fluids, which are assumed known in terms of their
dependences on thermomechanical control variables. One of the mechanical quantities, which
will be needed soon, is the total force resulted from integrating the three-dimensional stress
tensor over any of the four side surfaces, B̄α

±,

F Gibbs
(
Bα

±
) =

∫
Bα±

ds T βνβ +
∫

B̄α±
dĀ ν̄ · (θ+T̄

+ + θ−T̄−), (14)

where ν̄ is the outward-pointing unit vector normal to the relevant side surface.

3. A microscopic description of membrane mechanics

Having introduced different mechanical quantities that constitute the Gibbs description of
mechanics of a fluid membrane, we will in this section approach the mechanics of the
membrane from the microscopic perspective briefly described in the introduction. In this
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perspective, distributions of forces and torques, or mechanical stress tensors, are considered
three dimensional and, in particular, the inhomogeneity in the distributions along the dimension
transverse to the membrane surface is described explicitly. Our main goal is to establish a
concrete connection between this microscopic description and the Gibbs description. The
physical concept that underlies this connection is that of mechanical equivalence. Specifically
speaking, we will build up this connection by considering the linear stresses, the corresponding
forces, the angular stresses and the corresponding torques one by one. A similar approach,
dealing with the cases of the stresses, can be found for instance in [16].

3.1. The linear stress tensors

In the microscopic description, a linear stress tensor, T̄real, is employed to describe the local
distribution of force around any point in the three-dimensional space occupied by the membrane
and its surrounding fluids. It is a tensor of rank 2. To relate this tensor to the effective linear
stress tensor, T α , which is defined only on the two-dimensional dividing surface, we apply the
concept of mechanical equivalence explicitly. It states that in the Gibbs and the microscopic
descriptions, the total forces, resulted from integrating their respective linear stress tensors
over each of any two independent side faces chosen out of B̄α

±, must be the same. In expression,
the statement reads∫

B̄α±
dĀ ν̄ · T̄real =

∫
Bα±

ds T βνβ +
∫

B̄α±
dĀ ν̄ · (θ+T̄+ + θ−T̄−), (15)

where equation (14) has been used.
Alternatively, we can define a stress tensor, T̄excess, by

T̄excess ≡ T̄real − θ+T̄+ − θ−T̄−. (16)

This tensor represents all the excess stress that results from the existence of the membrane
interface. Using it we can rewrite equation (15) as∫

Bα±
ds T βνβ =

∫
B̄α±

dĀ ν̄ · T̄excess. (17)

To derive from equation (17) an explicit expression of T α in terms of the microscopic
stress tensor, we must rewrite the two sides of equation (17). For the rewriting of the right-hand
side we choose to work with the curvilinear coordinates (ξ 1, ξ 2, h), which parametrize the
spatial position of any point R̄ in the system by

R̄(ξ 1, ξ 2, h) = R(ξ 1, ξ 2) + hn(ξ 1, ξ 2). (18)

We then parametrize any of the boundary-curve elements, Bα
±, by R(ξ 1(λ), ξ 2(λ)), in a chosen

orientation such that the outward-pointing normal vector to the corresponding side face, B̄α
±,

is given by

ν̄ =
∣∣∣∣t̄α

dξα

dλ

∣∣∣∣
−1

(t̄β × n)
dξβ

dλ
, (19)

where

t̄β ≡ ∂βR̄ = (
δ

γ

β − hK
γ

β

)
tγ . (20)

It follows then that

dĀ ν̄ = dλ dh(t̄β × n)
dξβ

dλ
. (21)
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Using tγ × n = tαεαγ , we get∫
B̄α±

dĀ ν̄ · T̄excess =
∫

B̄α±
dλ dh tα · T̄excessεαγ

(
δ

γ

β − hK
γ

β

)dξβ

dλ
. (22)

Rewriting the left-hand side of equation (17) by use of the parametrization we get∫
Bα±

ds T ανα =
∫

Bα±
dλ T α[tα · (tβ × n)]

dξβ

dλ

=
∫

Bα±
dλ T αεαβ

dξβ

dλ
. (23)

Comparing equation (23) with equation (22), we finally arrive at the expression that we need:

T α(ξ 1, ξ 2) =
∫

dh[gαβ(ξ 1, ξ 2) − hLαβ(ξ 1, ξ 2)]tβ(ξ 1, ξ 2) · T̄excess(ξ
1, ξ 2, h). (24)

3.2. The resultant force densities

f , the surface density of the force resulted from the surface excess linear stress, has a
counterpart f̄ excess ≡ ∇ · T̄excess in the microscopic description, which is the volume density
of the force resulted from the three-dimensional excess linear stress tensor. Following the
derivation of equation (24) we can now find in a straightforward way an expression of f in
terms of f̄ excess.

Using the definition of f , given in equation (5), together with equation (17) and applying
Gauss’ law, we have∫

�

dAf =
∫

∂�

ds T ανα =
∫

∂�̄

dĀ ν̄ · T̄excess =
∫

�̄

dV̄ f̄ excess. (25)

Working further based on the parametrization defined by equation (18), we can express the
volume element in the above integration as

dV̄ = (1 − 2hH + h2K) dA dh. (26)

Since equation (25) holds for any � of arbitrarily small area, we conclude then that

f =
∫

dh(1 − 2hH + h2K)f̄ excess. (27)

To illustrate the physical meaning of f̄ excess in another way, we derive for it an alternative
expression. We first introduce the volume density of the resultant force in the microscopic
description of the system, which is given by

f̄ real ≡ ∇ · T̄real, (28)

and those in the bulk fluids of the Gibbs model, which are given by

f̄± ≡ ∇ · T̄±. (29)

Using these quantities we can then express f̄ excess at any point r in the system as follows:

f̄ excess = f̄ real − θ+f̄+ − θ−f̄− −
∫

M
dAn · (T̄+ − T̄−)δ(r − R), (30)

where the subscript M indicates that the integral is over all of the membrane and R is the
membrane shape function.

Based on equation (30), it is clear that f̄ excess consists of not only the difference in the
volume force densities, f̄ real and f̄±, but also any non-zero stress difference across the dividing
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surface, n ·(T̄+ − T̄−), associated with the Gibbs bulk fluids. For example, in the simple case of
a conventional system of coexisting fluids separated by an interface, where there is no applied
external force, the effective linear stress tensor T α is characterized by a single mechanical
quantity, a homogeneous surface tension σ :

T α = σ tα. (31)

The effective resultant force f is then 2Hσn. Equation (30) thus collects all the microscopic
effects that contribute to f . If f̄ real = 0 and f̄± = 0 are inserted into equation (30) as the
conditions of mechanical equilibrium for the whole system in the microscopic model and for
the bulk fluids in the Gibbs model, respectively, equation (30) becomes the familiar statement
of mechanical equilibrium for the dividing surface in the Gibbs model, namely f must balance
the stress (pressure) difference across the dividing surface. Where there exists a volume
distribution of an external force in the system which acts on membrane molecules but not the
bulk fluids, such as one that could be induced by an electric field, f̄ real is non-zero and f̄± = 0.
f̄ excess thus also includes the effect arising from any interface-related inhomogeneity in f̄ real.

3.3. Micromechanical expression for the angular stress

Similar to the linear stress tensor that we have already discussed, the angular stress in the
realistic microscopic description of a membrane system is a second rank tensor, denoted by
�̄real in the following. Although what we develop in this section can be applied to cases where
the systems under considerations have internal angular momenta, we will limit ourselves to
considering those where internal angular momenta are not relevant. For such a system, the
angular stress tensor is related to the linear stress tensor in a straightforward way:

�̄real = −T̄real × R̄, (32)

where T̄real is assumed symmetric, since a symmetric linear stress tensor can always be
constructed3. The tensor product is defined as

(T̄real × R̄)ij = εjkl T̄real,ikR̄l , (33)

where the Latin indices range from 1 to 3 and indicate the components in a Cartesian basis
{ei}, and where εjkl is a third rank tensor, ε123 = 1, and εjkl is antisymmetric under any
pairwise interchange of indices. Einstein’s summation convention is also implied here for
repeated indices.

To establish the microscopic origin of the effective excess angular stress defined on the
dividing surface in the Gibbs description, Ω, we use �̄real as an intermediate and follow steps
that are very similar to those established in the preceding discussion concerning the linear
stress tensors. The angular stress tensors in the two Gibbs bulk fluids, �̄±, are related to their
linear stress counterparts according to �̄± = T̄± × R̄. Subtracting these contributions from
�̄real, we obtain a tensor of excess angular stress,

�̄excess = −T̄excess × R̄. (34)

Going a few steps further, we arrive at the following expression:∫
Bα±

ds Ωβνβ =
∫

B̄
α

±
dĀ R̄ × (ν̄ · T̄excess). (35)

3 In fact, equation (32) applies even in the case where a system possesses internal angular momentum, since it is still
possible to construct a symmetric linear stress tensor which takes into account the internal angular momentum [26].
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Using the parametrizations given in equations (18)–(21), we can re-express the left- and
right-hand sides of the above equations, respectively, as∫

Bα±
ds Ωβνβ =

∫
Bα±

dλΩβεβγ

dξγ

dλ
(36)

and∫
B̄α±

dĀ R̄ × (ν̄ · T̄excess) =
∫

B̄α±
dλ dh(R + hn) × (tα · T̄excess) · εαγ

(
δ

γ

β − hK
γ

β

)dξβ

dλ
. (37)

Comparing these two expressions we arrive at the final expression which reveals the
microscopic origin of Ω:

Ωα =
∫

dh(gαβ − hLαβ)[R × (tβ · T̄excess) + hn × (tβ · T̄excess)]. (38)

The two terms in the above expression correspond naturally to two contributions: a
contribution related to the excess linear stress in the Gibbs model,

R × T α =
∫

dh(gαβ − hLαβ)R × (tβ · T̄excess) (39)

and a contribution giving rise to the internal excess angular stress,

Nα =
∫

dh h(gαβ − hLαβ)n × (tβ · T̄excess)

= −
∫

dh h(gαβ − hLαβ)tγ εγ δ(tβ · T̄excess · tδ). (40)

From equation (40), it is clear that the primary contribution to Nα (the one that is least
suppressed by the microscopic thickness of the membrane) is the first moment of the
distribution of the linear stress tensor in the transverse direction. Following the nomenclature
used in the existing literature on membrane mechanics [1], we will also call Nα the bending
moment of the membrane.

Equation (40) also implies that Nα · n = 0. This is a consequence of the assumption we
have made in our description of the membrane mechanics: that there is no bending moment
pointing in the normal direction of the membrane surface. This assumption is explicitly
expressed in equation (18) and is consistent with our empirical understanding of the fluid
characteristics of the membrane in its lateral dimensions. This property of Nα · n = 0 allows
us to define a related vector quantity, Mα , which is given by

Nα ≡ n × Mα and Mα · n = 0. (41)

Nα and Mα have only tangential components:

Mα = Mαβtβ, Nα = Nαβtβ. (42)

Expressed in terms of these components, equation (41) assumes two alternative forms:

Mαβ = −Nαγ ε β
γ , Nαβ = Mαγ ε β

γ . (43)

Thus, we are led to the following micromechanical expression for Mαβ :

Mαβ =
∫

dh h(gαγ − hLαγ )(tγ · T̄excess · tβ). (44)

The simplicity of this expression compared to (40) may already demonstrate why Mαβ is often
more convenient to use than Nα . It is also physically more intuitive, readers familiar with [1]
will find that Mαβ are exactly what are called moment resultants there. In what follows we
will use Nα and Mαβ interchangeably, choosing the one that is more convenient in the case at
hand.
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3.4. Micromechanical expression for the torque

A micromechanical expression for the effective area density of excess torque defined in
equation (9), τ , can also be developed. In the microscopic description, we can define a
volume density of excess torque as the divergence of the excess angular stress tensor, i.e.,

τ̄ excess = ∇ · �̄excess. (45)

Carrying out steps of derivation similar to those leading to equation (27) for the effective
area density of excess force, we find that τ is related to its counterpart in the microscopic
description as follows:

τ =
∫

dh(1 − 2hH + h2K)τ̄ excess. (46)

We can further relate τ to the force distribution f̄ excess, since

τ̄ excess = R̄ × f̄ excess, (47)

a consequence of the symmetry of the linear stress tensor in the microscopic description.
Inserting (47) into (46) and performing the integration yields a more revealing expression for
τ or, more specifically, for the effective internal torque, τ int, defined in equation (12):

τ = R × f + τ int, (48)

where

τ int =
∫

dh(1 − 2hH + h2K)(R̄ − R) × f̄ excess = εαβtβ

(
Dγ Mγ

α − n · T α

)
. (49)

It is clear from the above expression that only the tangential components of the force
distribution, f̄ excess, that are not localized on the dividing surface contribute to the effective
internal torque. Under the condition of mechanical equilibrium, the tangential components
of f̄ excess are zero, unless there acts a spatially distributed external force in the directions
tangential to the dividing surface. Consequently, the internal torque is zero under the same
condition.

A couple of remarks on τ int may be made here. First, τ int has not been a part of the
effective description of membrane mechanics developed in the earlier works [1, 16, 20].
There are, however, experimental situations where τ int is essential. An example is when an
electric field induces and couples to an electric dipole moment of the membrane [22, 23].
Thus, we will not neglect τ int here.

Secondly, the fact that the component of τ int in the direction normal to the dividing surface
is always zero makes another point clear. Using this fact in equation (12) by setting its normal
component to zero leads to the following result:

T αβεαβ + Mα
γ ε

γ

βK
β

α = 0. (50)

This result states that T αβ is symmetric only if the bending-moment tensor, Mα
β , and

the curvature tensor, Kα
β , commute or, in other words, if both tensors become diagonal

simultaneously, in a properly chosen basis of tangential vectors at every point on the surface.
This condition may be satisfied in practice in most cases of membrane systems but not in
general, although its generality has been assumed in some of the earlier literature [1].

4. Free-energy-based description of membrane mechanics

The descriptions of the mechanics of membranes that we have developed so far are formulated
directly in terms of the linear and angular stresses or force and torque densities as the
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divergences of the corresponding stresses. However, often in practice, an alternative
formulation is used, given in terms of mechanical free energies as functionals of deformation
of the membranes under consideration. In such cases, the mechanical stresses are treated
as quantities derived from the free-energy functionals. In this section, we will develop,
based on symmetry principles and mathematical argument only, a general functional form
of the variation of a membrane mechanical free energy associated with an arbitrary variation
in the deformation of the membrane. We will view the membrane mechanics from the
microscopic perspective and classify membrane deformation into two categories: one which
is of translational nature and the other which corresponds to rotations. From the general
functional form of the free-energy variation, we will then identify those variational quantities
that are related to the mechanical stresses and, indeed, clarify the correct relations between
them. At the end of the section, we will apply the general formulation to a more specific, and
frequently used, example of a mechanical free energy and derive the mechanical quantities
such as T α , Nα .

4.1. The mechanical free energy and deformation of a membrane

In our consideration, we assume that deformations of the membrane occur at constant
temperatures. Correspondingly, we work with a thermodynamic ensemble where the most
relevant free-energy density is given by f̄ = ē − T s̄, where ē is the energy density, T is
the temperature and s̄ is the entropy density. Following the already established procedure for
defining the excess of various extensive quantities we define a volume density of the excess
of the mechanical free energy by

f̄ excess(r) ≡ f̄ real(r) − θ+(r)f̄ +(r) − θ−(r)f̄ −(r), (51)

where f̄ real(r) is the volume density of the actual free energy contained in the system and
f̄ ±(r) are defined to be the free-energy densities associated with the ‘filler’ bulk fluids in the
Gibbs model.

As before, we consider cell �̄, whose content of the excess free energy is given by

F�̄,excess =
∫

�̄

dV̄ f̄ excess. (52)

We then define the scalar quantity f to be the excess free energy per unit area associated with
the dividing surface, i.e.∫

�

dAf ≡ F�̄,excess. (53)

Immediately, we have the following equivalent expression of f :

f =
∫

dh(1 − 2hH + h2K)f̄ excess. (54)

We consider f to be the core element in a free-energy-based, phenomenological model
description of the mechanics of a membrane system of interest and take the functional
dependence of f on the relevant thermomechanical variables as our starting point. In the
discussion that follows, we will limit ourselves to situations where f is a local function of
surface density fields of excess molecular numbers nA, where A ranges over the different
species in the membrane, as well as of derivatives of the shape field, R, of the dividing
surface. But, we will only consider the functional dependence at a generic level, as what
is allowed by symmetry as well as mathematical requirements. In other words, we will
leave the specific functional behaviour of f to be a degree of freedom to be fixed in a
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particular phenomenological model and only derive consequences from the generic functional
dependence of f on the variables.

A few remarks may be given here to clarify our limiting assumption. First, the assumption
that only derivatives of R, not R itself, are included in f is a direct manifestation of our
requirement that f be invariant under rigid translations of the membrane system. Moreover,
we also assume, or require, that f be rotationally invariant. In the case where external forces
such as gravity or an external electric field do work on the system during its deformation, this
requirement of the invariances in turn means that f represents only the ‘internal’ contributions
or, in other words, that the contributions associated with the external forces must be considered
in addition. This requirement is really a matter of choice, made to facilitate the following
formulation in a technical sense, as it will become clear later on.

Secondly, additional thermodynamic variables or fields can be included in f , of course.
As long as these fields remain invariant with respect to rigid translations and rotations of the
whole system, their addition does not lead to any qualitative changes in the arguments that
will be developed in the following. As an example, we may imagine a situation where the
collective orientation of the constituent lipid molecules of the membrane under consideration
becomes relevant [27]. A vector field, φ, may then be used to represent the orientational
field. A number of scalar fields which have the invariances can then be defined from φ: its
length, its projection onto the normal direction to the dividing surface and the angle between
its tangent component, (φ · tα)tα , and the ξ 1-axis in the internal coordinate basis of the local
tangent space.

Lastly, the molecular number density fields nA appearing in f should be understood as
the excess fields defined as∫

�

dAnA ≡
∫

�̄

d V̄ n̄A,excess. (55)

In other words, the material content of each molecular species in cell �̄ in the Gibbs description
must be the same as that in the corresponding microscopic description.

For the purpose of deriving relevant mechanical quantities from the free-energy functional
f , the variation of f induced by an arbitrary, infinitesimal deformation δR in the shape of
the dividing surface becomes an essential quantity. Although we are not able to evaluate
the specific variation without the knowledge of the specific functional behaviour of f , we
can already make a statement concerning the general functional structure of the variation δf

from a purely mathematical point of view: δf associated with the deformation can always be
organized into the following form:

1√
g

δ(
√

gf ) = 1√
g

δ(
√

gf )|T ,{√gnA} = −f rs · δR + Dα(Ŝ
α · δR). (56)

In the above equation, the vector quantity f rs is regular in the sense that it does not involve
any differential operators, while

Ŝ
α =

∞∑
n=0

S
αβ1...βn

(n) Dβ1 · · · Dβn
(57)

may involve differential operators. The fixed
√

gnA constraint for the variation corresponds
to the requirement that the excess number of molecules contained in the surface element � be
conserved for each species under the deformation.

Two points may already be noted here, concerning equation (56). The first is that the
variation of the free energy is not sufficient to define Ŝ

α
unambiguously. We will return to this

point later, in section 5. The second is that f rs = DαSα
(0). This follows from the requirement
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that the free energy be translationally invariant or, equivalently, that the right-hand side of
equation (56) vanishes for constant δR.

Quantities f rs and S
αβ1...βn

(n) ’s may be related to the mechanical quantities already
introduced and discussed, such as f , τ ,T α . It is the purpose of the rest of this section
to develop the connections. In order to do that, we will start from a microscopic point of view
and consider the three-dimensional cell �̄ and an arbitrary, purely mechanical deformation
δR̄ which it undergoes. Given δR̄, we can establish, based on a mathematical point of view,
the following general functional expression for the corresponding variation of the free energy,
F�̄,excess:

δF�̄,excess = −
∫

�̄

dV̄ f̄ excess · δR̄ +
∫

∂�̄

dĀ ν̄ · ˆ̄T · δR̄

−
∫

∂�̄

dĀ ν̄ · [δR̄ − δ(R + hn)]f̄ excess. (58)

ˆ̄T in the second integral represents a tensor operator with a general form as

ˆ̄Tij =
∞∑

n=0

T̄(n),ijk1...kn
∇k1 · · · ∇kn

, (59)

where quantities T̄(n),ijk1...kn
are the tensors of different ranks.

Seen from a physical point of view, the meanings of the three terms in equation (58)
are almost obvious. The first term represents the mechanical work done by any non-zero
volume-distributed external force, which balances f̄ excess. The second term describes the
work associated with the forces acting on and distributed over the boundary surface of cell
�̄ by the environment it is in contact with. The appearance of the tensor operator ˆ̄T may,
however, have obscured this physical interpretation and we will comment on this point a bit
later. The presence of the last term has to do with the following fact: that the geometry of cell
�̄ is defined in such a way that its side boundary surfaces always remain orthogonal to the
dividing surface. Consequently, there is a free-energy change associated with the movement
of the matter across the cell boundary induced by δR̄.

To explain why we have identified the vector quantity in the first term as f̄ excess, let us
consider a situation where cell deformation and its derivatives vanish at the cell boundary. The
variation in the cell free energy must then equal the work done by any non-zero external force
f̄ real,ext under the volume deformation, i.e.,

δ

(∫
�̄

dV̄ f̄ real

)∣∣∣∣
∂�̄

=
∫

�̄

dV̄ f̄ real,ext · δR̄ = −
∫

�̄

dV̄ f̄ real · δR̄. (60)

In a similar fashion, the variations in the free energies, f̄ ±, stored in the ‘filler’ bulk fluids in
the Gibbs description may be expressed as

δ

(∫
�̄±

dV̄ f̄ +

)∣∣∣∣
∂�̄

=
∫

�̄±
dV̄ T̄± : ∇δR̄ = −

∫
�̄±

dV̄ f̄± · δR̄ ±
∫

�

dAn · T̄± · δR̄

∣∣∣∣
�

, (61)

where the colon means that the two tensors are contracted into a scalar and �̄± represents
the parts of �̄ which are, respectively, above and below the dividing surface �. Note that
equation (61) implies that the free energies of the bulk fluids do not contain terms that vary
with the second spatial derivative of the cell deformation, in contrast to the excess free energy
assigned to the dividing surface.

Subtracting equation (61) from equation (60) and using equation (30), we find

δF�̄,excess|∂�̄ = −
∫

�̄

dV̄ f̄ excess · δR̄. (62)

This is exactly the contribution described by the first integral in equation (58).
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Concerning the second integral in equation (58), the connection between its physical
meaning and its functional structure or, more specifically speaking, the presence of the tensor
operator, ˆ̄T, may not appear obvious. A reason for the presence of ˆ̄T arises from the fact
that any given free-energy functional alone does not lead to a unique identification of the
corresponding stress tensor4. In other words, a kind of ‘gauge freedom’ exists for the free-
energy-based derivation of stress tensors. The expression of this gauge freedom necessarily
introduces the operator terms contained in equation (59). We will make this point clear
by arguing that the non-operator term in ˆ̄T, T̄0, may be identified with T̄excess introduced
earlier, which is assumed to have a well-defined physical interpretation. The argument may
be constructed as follows.

We first consider a rigid translation of the whole cell �̄, i.e., δR̄ = δR = C, where C is
a constant vector. It follows immediately that

0 = δF�̄,excess = −C ·
∫

�̄

dV̄ (f̄ excess − ∇ · T̄(0)). (63)

Since �̄ is arbitrary and can also be made arbitrarily small within the limit of a continuum
description, this means that

f̄ excess − ∇ · T̄(0) = ∇ · (T̄excess − T̄(0)) = 0. (64)

We can then conclude based on a standard theorem in calculus that the difference between
T̄excess and T̄(0) is the curl of another tensor V̄, i.e.,

T̄(0),ij + εikl∇kV̄lj = T̄excess,ij . (65)

However, as we will see shortly, this difference can be eliminated by a gauge transformation
to a new tensor T̄′

(0). In other words, given the knowledge of T̄excess,ij , we can always choose
a gauge transformation accordingly such that

T̄′
(0),ij = T̄(0),ij − εikl∇kV̄lj = T̄excess,ij . (66)

We assume, therefore, that T̄(0) is symmetric and identical to T̄excess from now on.
The gauge fixing can be performed because the following redefinition of ˆ̄T in the second

integral of equation (58),

ˆ̄T
′
ij δR̄j = ˆ̄T(0)ij δR̄j − εikl∇k(V̄lj δR̄j ), (67)

does not change the value of the integral. Note that T̄′
(1),ij = T̄(1),ij − εiklV̄lj∇kδR̄j is also

modified by the gauge transformation. In this context, we would also like to point out that a
more general transformation of the tensor operator,

ˆ̄T
′
ij δR̄j = ˆ̄Tij δR̄j + εikl∇k(

ˆ̄Wlj δRj ), (68)

where

ˆ̄Wij =
∞∑

n=0

W̄(n),ijk1...kn
∇k1 · · · ∇kn

, (69)

is itself another tensor operator, also leaves the free energy unchanged. Equation (68) will be
used later.

Equation (58) will provide the connection between the variational quantities defined in
equation (56) and the mechanical quantities developed in the effective (Gibbs) description of
the membrane mechanics, once a functional dependence of the cell deformation δR̄ on the

4 Another reason is that non-zero T̄(n),ijk1...kn for n > 0 become necessary if the orientational degrees of freedom of
the membrane under consideration are relevant, as in the systems of liquid crystals [28].
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deformation of the dividing surface, δR, can be established. In the following two subsections,
we consider situations where the cell deformation δR̄ is a local functional of the deformation
of the dividing surface, δR, together with the shape itself, R, and possibly other fields like the
density fields nA. We will take the parametrization of a material ‘particle’ in the membrane–
fluid system to be the (ξ 1, ξ 2, h)-coordinates it had before the deformation took place. Given
the requirement that the mechanics of the system be invariant under rigid translations, we may
propose a general form for a description of the cell deformation:

δR̄ = δ(R + hn) + ˆ̄�
α · ∂αδR

= δR − htα(n · ∂αδR) + ˆ̄�
α · ∂αδR. (70)

Each ˆ̄�
α

for α = 1, 2 is again a tensor operator. It should be clear to the reader that the
differential operator ∂α is included in the above equation to ensure that δR̄ = δR under a
rigid translation.

The specific form of ˆ̄�
α

depends on the particular model under consideration, and a
physical example will be given at the end of this section. A couple of general properties of
ˆ̄�

α
can, however, be readily derived. The first is a consequence of the fact that under a rigid,

infinitesimal rotation of the system, δR = ξ × R and δR̄ = ξ × R̄, where ξ is a constant
vector. Applying this requirement to equation (70) leads to a condition on ˆ̄�

α
:

ˆ̄�
α × tα = 0. (71)

The second property,

ˆ̄�
α|h=0 = 0, (72)

is an obvious one, an expression of the fact that δR̄ should be equal to δR at the dividing
surface where h = 0.

4.2. Translational shape deformations

In this subsection, we assume that δR represents a deformation resulted from a local
translational movement of the dividing surface. Inserting equation (70) into the general
functional form of the cell free energy, equation (58) and performing the integral over h, we
get the expression of the free energy in terms of surface-related quantities only, which reads

δF�̄,excess =
∫

�

dA[−f · δR − (n × τ int) · tα(n · ∂αδR)

− Γ̂
α · ∂αδR + Dα(T α · δR + T̂

α

∗ · δR)]. (73)

Two vector operators, Γ̂
α

and T̂
α

∗ , are involved in the above equation. Γ̂
α

is given by

Γ̂
α ≡

∫
dh(1 − 2hH + h2K)f̄ excess · ˆ̄�

α
, (74)

and is a tensor operator, but contains a regular, non-operator term.

T̂
α

∗ ≡
∞∑

n=1

T
αβ1...βn

(n) Dβ1 · · ·Dβn
(75)

is a full differential operator which is related to ˆ̄T. We are not, however, particularly interested
in the operator T̂

α

∗ and do not, therefore, provide its explicit expression.
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Γ̂
α · ∂R can always be reorganized into the following form:

Γ̂
α · ∂αδR = γα

(0) · ∂αδR + Dα(γ̂α
∗ · δR), (76)

which defines a regular vector γα
(0) and a vector operator

γ̂α
∗ ≡

∞∑
n=1

γ
αβ1...βn

(n) Dβ1 · · · Dβn
. (77)

As we will shortly see, these two quantities will add terms to the stress tensors T α and Ωα

that has not been included in the previous formalisms [1, 16, 20], and they will be discussed
further in a specific example later. Using equation (76) we can rewrite equation (73) as

δF�̄,excess =
∫

�

dA
{−[

f − Dα

(
γα

(0) + (n × τ int) · tαn
)] · δR

+ Dα

[(
T α − γα

(0) − (n × τ int) · tαn
) · δR + (T̂

α

∗ − γ̂α
∗ ) · δR

]}
. (78)

Comparing the above equation with equation (56), we can relate the excess mechanical
quantities appearing here to the variational quantities f rs and Sα

(0) derived from equation (56).
Immediately we have

T α = Sα
(0) + γα

(0) + (n × τ int) · tαn (79)

and

f = f rs + Dα

[
γα

(0) + (n × τ int) · tαn
]
. (80)

The above two equations of connection constitute a new result, which has not been
discussed in the existing literature so far. It is clear from the equations that the functional form
of f alone is not sufficient for deriving the excess linear stress T α and the surface density of
the resultant force, f : in addition, we need the knowledge of γα

(0) and τ int, which are non-zero
in general when external forces act on the membrane at positions that are not precisely on
the dividing surface. Only in the case where there exist no such spatially distributed external
force, both γα

(0) and τ int vanish. Consequently, equation (79) reduces to Sα
(0) = T α , and we

recover a connection used canonically earlier [16, 20]. Similarly, equation (80) reduces to
f = f rs.

It may help to put the discussion in this section in a context if we briefly mention
an application of this variational approach: the establishment of equations of mechanical
equilibrium for a membrane or the ‘equilibrium-shape’ equations as they are called in the
literature [6, 8, 17]. Once T α and f have been determined based on the derivation of
equations (79) and (80) both from a given functional of the membrane excess free energy,
f , and from given knowledge of γα

(0) and τ int, the equation of mechanical equilibrium that
corresponds to force balance can be established from equation (30) to be

f + f ext + n · (T̄+ − T̄−)|r=R = 0, (81)

where

f ext =
∫

dh(1 − 2hH + h2K)
(
f̄ real,ext − θ+f̄+

ext − θ−f̄−
ext

)
, (82)

with f̄ real,ext being the external force in the microscopic system and f̄±
ext the external forces that

are assigned to the bulk fluids in the Gibbs system. A simple example of such an application
is given, for instance, by a membrane system, the mechanics of which is described entirely
by the Helfrich bending-energy functional [3] and where there is no external force applied.
In this case, the relevant equilibrium-shape equation is set up by setting γα

(0) and τ int equal
to zero and by equating the component of f normal to the dividing surface to the ‘pressure
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difference’ across the dividing surface5. The equation resulted in agrees with that obtained
from the variational procedure presented in, for example, [17].

4.3. Rotational shape deformations

The force f and the linear stress T α emerge naturally from equation (78), which results from
the variation in the cell free energy with respect to a translational shape deformation, δR,
of the dividing surface. In this section, we demonstrate that in a similar fashion the torque τ
and the angular stress Ωα will emerge from the variation in the same free energy associated
with a shape deformation that results from infinitesimal local rotations of the dividing surface.

An arbitrary rotational deformation of the dividing surface is described by δR = ξ × R,
where ξ = ξ(ξ 1, ξ 2) is a vector field prescribing the extent of the local rotations. Substituting
this into equation (70) leads to the following expression for the whole-cell deformation:

δR̄ = ξ × R̄ − htα(R × n) · ∂αξ + ˆ̄�
α · ∂α(ξ × R). (83)

We may now replace δR̄ in equation (58) with the above expression and derive an effective
expression for the excess mechanical free energy contained in the cell in terms of the surface-
related quantities only.

Before doing that, however, we first make a point that will simplify the calculation of the
free-energy variation based on equation (58). We have already argued that the mathematical
expression of the free-energy variation may involve a non-zero T̄(1),ijk in the tensor operator
ˆ̄T. But this term does not appear explicitly in the identification of the linear stress and the
force. It turns out that T̄(1),ijk can be neglected in the identification of the angular stress and
the torque also. To make this point explicitly, let us consider an infinitesimal rigid rotation of
the whole system, i.e., δR̄ = C ×R̄, under which the free energy of the cell remains invariant
in the absence of any external force. Inserting this expression into equation (58) and using the
fact that the linear stress tensor T̄excess is symmetric, we find

0 = δF�̄,excess = Cl

∫
�̄

dV̄ ∇i (T̄(1),ijkεjlk). (84)

Since C and �̄ are arbitrary the divergence in the integrand must vanish. The same
mathematical theorem that led to equation (65) allows us to conclude that

T̄(1),ijkεjlk = ∇j (εijkV̄kl), (85)

where V̄ is a mathematically well-defined tensor. Recollecting equation (68), which expresses
the gauge freedom, or the arbitrariness, in the definition of the tensor operator, we have

T̄′
(1),ijk = T̄(1),ijk + εiklW̄(0),lj + εiml∇mW̄(1),ljk. (86)

We can conclude then that an appropriate W̄(1),ljk can be chosen such that

T̄′
(1),ijkεjlk = 0. (87)

We will, therefore, assume that T̄(1),ijkεjlk vanishes in what follows.
Having made the above point, we can now substitute equation (83) into equation (58) and

derive the effective expression of δF�̄,excess. Using equation (87), performing the h-integral
and arranging the result in a revealing form, we arrive at

δF�̄,excess = −
∫

�

dA
{
τ − Dαωα

(0) − Dα[(n × τ int) · tα(R × n)]
} · ξ

+
∫

∂�

ds να

[− ωα
(0) + Ωα − ω̂α

∗ + Ω̂
α

∗ − (n × τ int) · tα(R × n)
] · ξ. (88)

5 Note that the term ‘pressure difference’ should be understood correctly as that defined in the Gibbs description.
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Several new quantities are introduced in the above expression. In particular, the vector quantity,
ωα

(0), and the vector operator, ω̂α
∗ , are defined by the following operation of the vector operator,

Γ̂
α
, defined earlier in equation (74):

Γ̂
α · ∂α(ξ × R) = ωα

(0) · ∂αξ + Dα(ω̂α
∗ · ξ), (89)

with

ω̂α
∗ =

∞∑
n=1

ω
αβ1...βn

(n) Dβ1 · · · Dβn
. (90)

Obviously, ωα
(0) and ω̂α

∗ are related to γα
(0) and γ̂α

∗ defined earlier in equation (74), and for ωα
(0)

the connection is given by

ωα
(0) = R × γα

(0) − γ̂α
∗ × R. (91)

Another vector operator, Ωα
∗ , has a general form given by

Ω̂
α

∗ =
∞∑

n=1

Ωαβ1...βn

(n) Dβ1 · · · Dβn
, (92)

and is related to T α
∗ .

The effective angular stress Ωα appearing in equation (88) must now be related to the
corresponding variational quantities associated with the functional of the surface excess free
energy f . In order to do that, we still need to calculate, for the rotational deformation of the
dividing surface, δR = ξ × R, the corresponding variation in f . Inserting the deformation
expression into equation (56) and reorganizing the result, we obtain

1√
g

δ(
√

gf ) = −(R × f rs) · ξ + Dα(Q̂
α · ξ). (93)

The vector operator Q̂
α

has the general form

Q̂
α =

∞∑
n=0

Q
αβ1...βn

(n) Dβ1 · · ·Dβn
. (94)

Its first term is given by the following particular expression:

Qα
(0) =

∞∑
n=0

Dβ1 · · · Dβn
R × S

αβ1...βn

(n) , (95)

related to S
αβ1...βn

(n) ’s already derived from equations (56) and (57). Comparing the line integral
in equation (88) with the complete-derivative term in equation (93), we find

Ωα = Qα
(0) + ωα

(0) + (n × τ int) · tα(R × n). (96)

Finally, we can establish, for instance, the connection between the effective bending
moments, Nα , and the variational quantity, Qα

(0),

Nα = Qα
(0) + ωα

(0) − R × (
Sα

(0) + γα
(0)

)
, (97)

where equations (10) and (79) have been used. This equation may be written in a more
revealing form, where Nα is divided into two contributions:

Nα = Nα
rs − γ̂α

∗ × R. (98)

The first contribution, Nα
rs, defined as

Nα
rs ≡ Qα

(0) − R × Sα
(0) = −(

Ŝ
α − Sα

(0)

) × R (99)

can be obtained solely from the free-energy variation. The second contribution, −γ̂α
∗ × R,

requires additional knowledge of the cell deformation and any non-zero external forces. Again,
equation (98) makes it clear that a description of the membrane mechanics based on a given
free-energy density alone is in general not sufficient for identifying the effective mechanical
quantities of the membrane.
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4.4. Example

To make the so far rather general and formalistic discussion more concrete, we end this
section with an example. In the example, the surface density of the excess free energy is a
given function of temperature T, some number density fields nA’s, the mean curvature H and
the Gaussian curvature K defined for the dividing surface, i.e., f = f (T ,H,K, {nA}). A
specific example of such a function may be found in [29]. A simple purely geometric example
is given by the Helfrich free energy [3]:

f = κ

2
(2H − C0)

2 + κ̄K + σ, (100)

where κ, C0, κ̄ and σ are the phenomenological constants which are called bending rigidity,
spontaneous curvature, Gaussian rigidity and tension, respectively.

Following the framework we have already established, we first calculate the variation of
f = f (T ,H,K, {nA}). Using the following set of identities from differential geometry,

δ(
√

g) = 1
2

√
ggαβδgαβ, (101)

δH = − 1
2Kαβδgαβ + 1

2gαβδKαβ, (102)

δK = −Kgαβδgαβ + LαβδKαβ, (103)

and carrying out the variation, we obtain

1√
g

δ(
√

gf ) = 1

2
σαβδgαβ − λαβδKαβ, (104)

where

σαβ =
(

f − 2
∂f

∂K
K −

∑
A

∂f

∂nA

nA

)
gαβ − ∂f

∂H
Kαβ, (105)

λαβ = −1

2

∂f

∂H
gαβ − ∂f

∂K
Lαβ. (106)

Further using

δgαβ = tα · ∂βδR + tβ · ∂αδR, (107)

δKαβ = n · Dβ∂αδR, (108)

we can rewrite equation (104) in its final form:

1√
g

δ(
√

gf ) = −Dα

[(
σαβ − λαγ K β

γ

)
tβ + Dβλαβn

] · δR

+ Dα

{[(
σαβ − λαγ K β

γ

)
tβ + Dβλαβn − λαβn∂β

] · δR
}
. (109)

Comparing the above equation with equation (56), we can read off the various variational
quantities one by one. Sα

(0), which will contribute to the linear stress T α , is given by

Sα
(0) = (

σαβ − λαγ K β
γ

)
tβ + Dβλαβn. (110)

It should be pointed out here that a similar expression was obtained in [30] by a sophisticated
approach where geometric quantities were treated as auxiliary variables, which were
constrained to match the appropriate expressions in terms of the shape field R through
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the Lagrange multiplier formalism. Inserting equation (105) and equation (106) into
equation (110), we arrive at

Sα
(0) · tβ =

(
f − ∂f

∂K
K −

∑
A

∂f

∂nA

nA

)
gαβ − 1

2

∂f

∂H
Kαβ, (111)

Sα
(0) ·n = Dβ

(
−1

2

∂f

∂H
gαβ − ∂f

∂K
Lαβ

)
. (112)

f rs, which will contribute to the surface density of the deformation-related force, f , is given
by its components in the normal and the tangential directions:

f rs ·n = Dα

(
Sα

(0) · n
)

+ Sα
(0) · tβKαβ = 2H

(
f − ∂f

∂K
K −

∑
A

∂f

∂nA

nA

)

− ∂f

∂H
(2H 2 − K) − 1

2
DαDα ∂f

∂H
− LαβDαDβ

∂f

∂K
, (113)

f rs · tα = Dβ

(
S

β

(0) · tα

) − S
β

(0) · nKαβ = −
∑
A

nA∂α

∂f

∂nA

. (114)

The simplicity of equation (114) can be traced back to the reparametrization invariance of the
free energy [31].

To identify the variational contribution, Nα
rs, to the bending moments, we first find from

equation (109) that

S
αβ

(1) = −λαβn, (115)

S
αβ1...βn

(n) = 0, n � 2. (116)

Substituting these two results into equation (99) immediately leads to

Nα
rs = n × (λαβtβ) = λαβε

γ

β tγ . (117)

The formulae above can straightforwardly be applied to the purely geometric Helfrich free
energy in equation (100). The results match the corresponding expressions derived through
the Nöther approach in [20].

Note that Nα
rs · n = 0 in this case. In general, however, Nα

rs obtained from the direct
variation of a given free-energy density does not a priori have a zero normal component. On
the other hand, the condition Nα · n = 0 must be satisfied, as we have already discussed in
section 3.3. We will see in the next section that the normal component of Nα

rs is completely
arbitrary, and thus we can always choose a gauge in which it vanishes. The same is true
for the γ̂α

∗ × R part, and therefore the condition Nα · n = 0 can always be satisfied (as it
should be).

We have already pointed out in section 4 that a free energy alone is not sufficient in
general for the complete determination of the effective mechanical quantities. Besides τ int,
at least two additional quantities, γα

(0) and ωα
(0), are needed, which bear information on the

details of the three-dimensional deformation of the membrane–fluid system. To illustrate how
those quantities can be calculated, we consider an example, where the membrane changes
thickness when its shape is deformed. We will later show how this example can be applied to
membranes with a certain kind of active proteins incorporated. Mathematically, we can model
a change of thickness by the three-dimensional deformation

δR̄ = δ(R + hn) + δh̄n, (118)
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where the change in the transverse direction will be written as an expansion to second order
in h:

δh̄ = −2(ζ1 + ζ2hH) h
δ
√

g√
g

+ 2ζ3h
2δH, (119)

where ζ1, ζ2 and ζ3 are three dimensionless phenomenological parameters. The term involving
ζ1 + ζ2hH describes the effect of a mechanism where the membrane thickness shrinks (if
ζ1 + ζ2hH > 0) when the area of the membrane expands. The factor of 2 is chosen in order
to get agreement with the definition of the Poisson ratio in elasticity theory [32]. The term
characterized by parameter ζ3 models a type of structural changes in the system when the
membrane is bend. An example of the effects which could be described by such a term is the
flexoelectric effect [33].

Comparing the above equation with the equation of definition for the tensor operator �̂α ,
(70), we first find that it is given by

�̂α = −2(ζ1 + ζ2hH) hntα − 2ζ3h
2Kαβntβ + ζ3h

2nnDα. (120)

Going through the steps prescribed in equations (74) and (76), we arrive at the following
identification of γα

(0) and ωα
(0):

γα
(0) = −2(ζ1pexcess + ζ2HQexcess)t

α − ζ3QexcessK
αβtβ − ζ3D

αQexcessn (121)

and

ωα
(0) = R × γα

(0) − ζ3Qexcessε
αβtβ, (122)

where

pexcess =
∫

dh h(1 − 2hH + h2K)n · f̄ excess, (123)

Qexcess =
∫

dh h2(1 − 2hH + h2K)n · f̄ excess. (124)

We also obtain the ‘external’ contribution to the bending moment,

−γ̂α
∗ × R = ωα

(0) − R × γα
(0) = −ζ3Qexcessε

αβtβ, (125)

which is only tangential. Thus, we can determine the bending-moment tensor to be

Mαβ = λαβ − ζ3Qexcessg
αβ

= −1

2

(
∂f

∂H
+ 2ζ3Qexcess

)
gαβ − ∂f

∂K
Lαβ. (126)

We can give an explicit example of what the parameters ζ1, ζ2 and ζ3 could be, by assuming
that the membrane can be modelled as consisting of a material that mimics an incompressible
fluid. A fluid particle at distance h from the membrane will then move to a distance h̄ = h+δh̄

during a deformation in such a way that the fluid volume between the particle and the dividing
surface is conserved. Mathematically, we can write this criterion of volume conservation as
(see equation (26))

0 = δ

(∫ h̄

0
dh

√
g(1 − 2hH + h2K)

)

= δ

(√
g

(
h̄ − h̄2H +

1

3
h̄3K

))
. (127)
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If we isolate δh̄ in the above expression and expand to second order in h, we find

δh̄ = −(h + h2H)
δ
√

g√
g

+ h2δH + O((h3). (128)

Comparing with equation (119) we see that for this specific example we have

ζ1 = ζ2 = ζ3 = 1
2 . (129)

An application of the above considerations can be found for a model of membrane activity
proposed in [34] to explain experiments showing an increase in membrane shape fluctuations
upon activation of certain proteins in the membrane. In this model, the membrane proteins
were activated by feeding them with the right energy source, which they then consumed to
perform a specific task. While performing the task, the proteins were assumed to change
configuration or move nearby material in such a way that the proteins constantly pushed on
their surroundings. Mathematically, this was modelled as a distribution of forces added to the
force balance of the bulk fluids surrounding the membrane. In the language of this paper such
a force distribution can be included by assigning it to the external force density f̄ real,ext. A
way to write the model would then be

f̄ real,ext(r) =
∫

M
dA

∫
dhFact(ξ

1, ξ 2, h)nδ3(r − (R + hn)), (130)

where the specific expression for Fact used in [34] was based on each protein contributing a
force dipole:

Fact = (Fa(ρ
↑ − ρ↓) + 2HF ′

a(ρ
↑ + ρ↓))[δ(h − w↑) − δ(h + w↓)]. (131)

Here, ρ↑ and ρ↓ represent area densities of the active proteins in the membrane, with ↑ and ↓
indicating the two possible orientations of an asymmetric transmembrane protein. Fa and F ′

a

are the constants representing the strength of the active forces and their curvature dependence,
w↑ and w↓ are the constant lengths giving the distances from the membrane where the forces
act. If we switch form the coordinate r to (ξ 1, ξ 2, h) and use that f̄ real,ext has to be balanced
by an equal but opposite f̄ real, we can restate equation (130) as

f̄ real(ξ
1, ξ 2, h) = − nFact(ξ

1, ξ 2, h)

1 − 2hH + h2K
. (132)

We can define a Gibbs system corresponding to this microscopic system by stating that in
the Gibbs system the bulk fluids are free of external active forces, i.e. f̄± = 0. Then,
f̄ excess = f̄ real for h 	= 0 and we get the simple expressions

pexcess = −
∫

dh hFact, (133)

Qexcess = −
∫

dh h2Fact. (134)

The expression given for γα
(0) in equation (121), when supplemented by equations (129), (133)

and (134), is exactly the expression for the active contribution to the membrane stress T α
act

derived in [35] in a different manner. Thus, the considerations on the effect of external forces
distributed in the transverse direction to the membrane developed in this paper provide an
alternative point of view on the mechanics of this type of active membranes. We would like to
point out that this kind of membrane activity is also an example of how the Gibbs description
can be very useful. This was shown in [36] where the Gibbs description derived in [35] was
used to calculate the fluctuation spectrum of an active quasi-spherical vesicle.
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5. Arbitrariness in the effective stresses

As mentioned already in section 4 in connection with the free-energy variation, equation (56),
there exists a certain degree of arbitrariness in the definition of the variational contribution
Sα

(0) to the linear stress T α . Related to that, there is also arbitrariness in the variational
contribution Qα

(0), defined in equation (93), to the angular stress Ωα . This issue has been
mentioned in passing in some of the earlier literature [20], and it plays an important role in
the recent article [37], where it is proposed to find solutions of membrane shape equations
by equating an effective membrane stress tensor with a null stress that represents exactly
the arbitrariness discussed here. In this section, we discuss how to eliminate part of the
arbitrariness of the membrane stress tensor based on the understanding we have obtained of
the effective mechanical quantities from the microscopic perspective. Moreover, we will also
present a geometry-based interpretation of the remaining part of the arbitrariness.

It is not difficult to see that the free-energy variation formulated in equation (56) is
unchanged under a ‘gauge’ transformation of Ŝ

α
of the following form:

Ŝ′α · δR = Ŝ
α · δR + εαβ∂β(Ŵ · δR), (135)

where Ŵ is an arbitrary vector operator with the general form

Ŵ =
∞∑

n=0

W
β1...βn

(n) Dβ1 · · · Dβn
. (136)

Equation (135) corresponds to a redefinition of the variational contribution to the linear
and angular stresses:

S′α
(0) = Sα

(0) + εαβ∂βW (0), (137)

Q′α
(0) = Qα

(0) − εαβ∂β(Ŵ × R)

= Qα
(0) + εαβ∂β(R × W (0) + W (∗)), (138)

where

W (∗) = −(Ŵ − W (0)) × R

=
∞∑

n=1

Dβ1 · · ·Dβn
R × W

β1...βn

(n) . (139)

Note that there is more than sufficient freedom in the definition of W (∗) that allows us to
consider W (∗) as an arbitrary vector function6.

The key to a physically meaningful elimination of at least some of the arbitrariness
represented by the above equations is given by the bending moments. There is indeed a
physical requirement on the bending moment, Nα , namely, Nα · n = 0. This in turn implies
that it is natural to demand that the variational contribution, Nα

rs, should satisfy Nα
rs ·n = 0,

and we will see that we have enough gauge freedom to ensure this requirement. In other words,
we may use the arbitrariness in the stress definition to ensure that the physical requirement be
fulfilled. Another condition is the condition that the tangential components of the variational
bending moment M

αβ
rs = −Nα

rs · tγ ε
β

γ should be symmetric. This condition is a natural one
when the bending moments may be described as derivatives of the free energy with respect

6 Readers with knowledge of de Rham cohomology (see, for instance, [38]) should be able to convince themselves
that at least locally (135), (137) and (138) constitute the most general form of arbitrariness in Ŝ

α · δR,Sα
(0) and Qα

(0),
provided that their divergences are well-defined quantities.
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to the symmetric curvature Kαβ . But, it is not a general one, based on an understanding of a
microscopic origin.

To see what that amounts to explicitly, we write the ‘gauge’ transformation for Nα
rs, which

reads

N ′α
rs = Nα

rs + εαβtβ × W (0) + εαβ∂βW (∗). (140)

It should be clear that the second term on the right-hand side of this equation makes it quite easy
to choose the appropriate ‘gauge’ that satisfies the physical requirement. It can be checked
easily that both N ′α

rs ·n = 0 and a symmetric M
′αβ
rs can be achieved simultaneously by, for

example, the following gauge:

W (0) = (
Nβ

rs · n
)
tβ − (

1
2Nα

rs · tα

)
n, (141)

W (∗) = 0. (142)

It turns out that the two conditions mentioned above do not eliminate the arbitrariness, or
‘gauge freedom’, completely. The remaining gauge freedom is described by a transformation:

W (0) = 1
2εαβ(∂αΛ · tβ)n − εαβ(∂αΛ ·n)tβ, (143)

W (∗) = Λ, (144)

where Λ is an arbitrary vector function. It connects a sequence of Nα
rs’s and M

αβ
rs ’s, which all

satisfy the two conditions. In terms of Nα
rs and M

αβ
rs , the transformation reads

N ′α
rs = Nα

rs +
(
εαβδ

γ

δ + 1
2δα

δε
βγ

)
(∂βΛ · tγ )tδ, (145)

or, equivalently,

M ′αβ

rs = Mαβ
rs − 1

2 (∂αΛ · tβ + ∂βΛ · tα) + ∂γ Λ · tγ gαβ. (146)

5.1. Arbitrariness from the Codazzi–Mainardi equations and theorema egregium

No more obvious conditions that are physically meaningful can be imposed on the effective
stresses derived variationally to eliminate the remaining arbitrariness, represented by the
vector function Λ. In this subsection, we develop a geometrical interpretation of Λ. This
interpretation may help a user of the membrane mechanics make the most judicious choice,
or gauge, in practice.

The geometrical interpretation is derived from the Codazzi–Mainardi equations, given
in equation (A.16), and theorema egregium, formulated as in equation (A.17). To describe
qualitatively why the arbitrariness should be related to these equations, we first recall that a
surface is uniquely defined, modulo rotations, translations and reflections, by the two tensors
gαβ and Kαβ [39]. The metric tensor gαβ describes the local extension/compression of the
surface, the type of deformation from which the linear stress originates; the curvature tensor
Kαβ describes the local bending of the surface, apparently the type of deformation that is
associated with the angular stress or the bending moments. Were gαβ and Kαβ independent
of each other, we would be able to derive σαβ and λαβ , generally and uniquely, from
equation (104) as functional derivatives of the free energy, and then determine the stresses and
bending moments uniquely, as in equations (111) and (117). gαβ and Kαβ cannot, however, be
varied independently, due to the fact that they are tied together precisely through the Codazzi–
Mainardi equations and theorema egregium. In other words, general bending and stretching
of a surface cannot be decoupled completely. Thus, the geometrical constraints should be
related to the arbitrariness of the stress tensor.
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To show the connection more explicitly, we first note that the Riemann tensor Rαβγ δ for
two-dimensional geometrical manifolds can be written as

Rαβγ δ = R
2

εαβεγ δ. (147)

The full non-trivial content of theorema egregium is thus captured by equation (A.23):

R = 2K. (148)

We then consider a ‘contribution’ to the free-energy that reads

f = ωn(R/2 − K) . (149)

This term is identically zero and, therefore, makes no real contribution to the total free energy.
The contributions to the linear and angular stresses derived directly from the variation of this
zero free energy, using the definitions in appendix A and equations (104), (111) and (112),
are, however, not zero, although their divergences must be zero.

To calculate the variation, we first evaluate the variation of the Christoffel symbols, which
are given by

δ�
γ

αβ = 1
2gγ δ(Dβδgδα + Dαδgδβ − Dδδgαβ). (150)

From this we can then derive, based on equation (A.18),

δRγ

αδβ = Dδ

(
δ�

γ

αβ

) − Dβ

(
δ�

γ

αδ

)
, (151)

and in turn

δR =
(

−R
2

gαβ + DαDβ − gαβDγ Dγ

)
δgαβ. (152)

Using the above result, we finally arrive at a formal expression of the free-energy variation:

1√
g

δ(
√

gf ) = 1

2
σαβδgαβ − λαβδKαβ

+
1

2
Dγ [(−ωng

αβDγ + ωng
γαDβ

+ Dγ ωng
αβ − Dαωng

γβ)δgαβ], (153)

where

σαβ = ωn

(
2K − R

2

)
+ DαDβωn − Dγ Dγ ωng

αβ, (154)

λαβ = ωnL
αβ. (155)

Note that the boundary term inside the square brackets in the last line of equation (153) is
invariant under both rigid translations and rotations, and will not, therefore, contribute to the
stress tensor or the bending moment.

We can now use equations (107) and (108) to read off from equation (153) the contributions
to the stresses, which are

Mαβ
rs = λαβ = ωnL

αβ, (156)

Sα
(0) ·n = Dβλβα = Lαβ∂βωn, (157)

Sα
(0) · tβ = σαβ − λαγ K β

γ = DαDβωn − gαβDγ Dγ ωn. (158)
It is conceptually obvious that the above contributions necessarily imply a certain degree

of arbitrariness in the definitions of the stresses, since the starting point is a zero free energy.
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That this is the case can also be seen, if we make a gauge transformation of the form given in
equations (143) and (144) with Λ = ωnn: the stresses become zero in the new gauge.

The Codazzi–Mainardi equations are related to the tangential components of the vector
function Λ. The proof is similar to what has been given above. We give only a brief
presentation. The non-trivial content of the equations is captured by

DβK
β

α = DαK
β

β. (159)

We consider, therefore, the following zero free energy:

f = ωα
(
DβK

β

α − DαK
β

β

)
. (160)

Performing the variation in the same way as before, we get

Mαβ
rs = 1

2 (Dαwβ + Dβwα) − Dγ ωγ gαβ, (161)

Sα ·n = DβMβα, (162)

Sα
(0) · tβ = Kα

γ Dβwγ − KγδDγ wδg
αβ + 1

2K
β

γ (Dαwγ − Dγ wα) − wγ Dγ Lαβ. (163)

A useful mathematical fact for doing these calculations is that in two dimensions the following
identity holds for any tensor Aαβ :

εαγ Aγδε
δβ = Aβα − Aγ

γ gαβ. (164)

These stresses in fact represent the rest of the remaining gauge freedom, since they become
zero under the gauge transformation defined by Λ = ωαtα .

6. Conclusion

Canonically, mechanics of a fluid membrane is effectively described as the mechanics of an
infinitely thin surface. In other words, the effective description must reflect the physics that
is associated with the finite, albeit microscopic, thickness of the membrane. Moreover, the
effective description is formulated either in terms of the concepts of mechanical deformation
and stresses or in terms of mechanical free-energy functions. The connection between these
two descriptions has been a subject of discussion in the existing literature [1, 16, 20]. A
number of issues in this context have not, however, been addressed clearly and fully or at
all. In particular, they include the issue of what the microscopic origins are of the effective
mechanical stresses, as well as the issue of what the connection is between the two descriptions
when external forces act on the membrane system under consideration.

It is the main purpose of this paper to address these issues, in a way that both cast
the different existing works in a coherent framework and extend the current framework.
To this end, we have approached both of the effective descriptions from a microscopic
perspective, where the fluid membrane is treated as a microscopically thin layer, with
highly inhomogeneous material and force distributions in its transverse direction, and have
demonstrated unambiguously how the effective descriptions arise from the microscopic
perspective, i.e., the microscopic origins of the surface mechanical stresses. Moreover and
more importantly, we have, facilitated by the microscopic perspective, established a general
connection between the mechanical-stress-based and the free-energy-based descriptions.
Naturally, in doing so we have recovered the canonical connection already established in
the existing literature, but we have also addressed a specific issue that is important to practical
applications of the energy-based description of membrane mechanics: the issue of arbitrariness
involved in identifying the mechanical stresses from a given free energy. We hope that we
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have provided more insight into the issue and that the understanding will facilitate the utility
of both of the descriptions of membrane mechanics. Furthermore, we have worked out the
connection for situations where there act external forces on the system. This is a non-trivial
extension to the existing theories. We expect that it will be relevant and useful to further
studies of membrane mechanics, both theoretically and experimentally.
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Appendix A. Differential geometry of surfaces

In this appendix, we briefly review the mathematical language of differential geometry of
two-dimensional surfaces. A more comprehensive introduction can be found in [39, 40], for
example.

The shape of a two-dimensional surface is represented by a space-vector function
R = R(ξ 1, ξ 2). The variables ξ 1 and ξ 2 are internal coordinates corresponding to a
parametrization of the surface. At each point on the surface, a basis for three-dimensional
vectors can be established. Two of them are tangential vectors, defined as

tα ≡ ∂αR ≡ ∂R

∂ξα
, (A.1)

where α = 1, 2, and the third is a unit vector normal to the surface, given by

n ≡ t1 × t2

|t1 × t2| . (A.2)

Local geometry of the surface is characterized by two surface tensors, the metric tensor
and the curvature tensor. The local metric tensor is defined by

gαβ ≡ tα · tβ. (A.3)

It has an inverse, gαβ , which satisfies, by definition,

gαβgβγ = δα
γ , (A.4)

where δα
γ is the Kronecker delta and where the repeated Greek superscript–subscript indices

imply summation following the Einstein summation convention. The metric tensor and its
inverse are used to raise and lower Greek indices as in the following example:

tα = gαβtβ, tα = gαβtβ. (A.5)

The curvature tensor Kαβ is defined via the second derivatives of the surface shape function:

Kαβ ≡ n · ∂α∂βR. (A.6)

From it the scalar mean curvature H and the Gaussian curvature K can be obtained:

H = 1
2gαβKαβ, (A.7)

K = det gαβKβγ . (A.8)
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Two other tensors will also be introduced here:

εαβ ≡ εαβ

√
g, εαβ ≡ εαβ/

√
g, (A.9)

where εαβ = εαβ with ε11 = ε22 = 0 and ε12 = −ε21 = 1 are the tensor densities, and
g = det gαβ is the determinant of the metric tensor.

Expressions of covariant/contravariant differentiations of vector and tensor functions
defined on the surfaces are facilitated by the use of the Christoffel symbols, �γ

αβ . One instance,
which will become particularly useful later, is the covariant differentiation of a surface vector
function, w = wαtα , given by

Dαwβ = ∂αwβ + wγ �β
γα. (A.10)

The Christoffel symbols can also be defined as certain combinations of the derivatives of the
metric tensor, namely,

�
γ

αβ = 1
2gγ δ(∂αgβδ + ∂βgδα − ∂δgβα). (A.11)

It follows that the covariant divergence of wα can be written as

Dαwα = 1√
g

∂α(
√

gwα). (A.12)

The area of a local differential element of the surface is given by

dA = √
g dξ 1 dξ 2, (A.13)

an expression which will be repeatedly used in surface integrals.
Two equations that are frequently used in this paper are the Gauss formula

Dαtβ = Kαβn (A.14)

and the Weingarten equations

Dαn = −Kαβtβ. (A.15)

Equation (A.14) follows from the definition of the curvature tensor and the definition of
covariant differentiation, and equation (A.15) is obtained by differentiating n ·n = 1 and
n · tα = 0 and solving for Dαn.

We will also from time to time need both the Codazzi–Mainardi equations

DαKβγ − DβKαγ = 0 (A.16)

and an equation related to the famous theorema egregium by Gauss:

Rαβγ δ − Kαγ Kβδ + KαδKβγ = 0, (A.17)

where the Riemannian curvature Rγ

αδβ can be calculated from the Christoffel symbols by

Rγ

αδβ = ∂δ�
γ

αβ − ∂β�
γ

αδ + �
γ

εδ�
ε
αβ − �

γ

εβ�ε
αδ. (A.18)

Another way to define the Riemannian curvature is through covariant differentiation of
an arbitrary vector vγ :

(DαDβ − DβDα)vγ = Rγ

δαβvδ. (A.19)

In other words, Rγ

αδβ measures the degree to which covariant differentiations commute.
Contracting the Riemannian curvature tensor we get the Ricci curvature tensor

Rαβ = Rγ

αγβ, (A.20)

and further taking the trace we get the Ricci scalar

R = gαβRαβ. (A.21)
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Figure 3. A triangle bounded by coordinate curves and the curve c.

If we contract equation (A.17) twice with the metric and use the following identity,

Kαγ K
γ

β = 2HKαβ − Kgαβ, (A.22)

we see that the Ricci scalar and the Gaussian curvature are intimately related as

R = 2K. (A.23)

This is, in fact, one way to state theorema egregium.
Theorema egregium and the Codazzi–Mainardi equations relate the intrinsic geometrical

properties of the surface, i.e. those associated with the metric gαβ , to the extrinsic properties
associated with Kαβ . In the main part of the paper it is shown how these relations lead to some
arbitrariness in the definition of stresses in membranes.

There is a symmetric tensor which will be used sufficiently often to merit a symbol on its
own. It is defined as

Lβγ ≡ εβδεγ εKδε = 2Hgβγ − Kβγ . (A.24)

This tensor is proportional to the inverse of the extrinsic curvature tensor (when the inverse
exists):

Lβγ Kγδ = Kδ
β

δ . (A.25)

It can be seen that

DβLβγ = 0, (A.26)

which follows from

Dγ εαβ = 0 (A.27)

and from equation (A.16).

Appendix B. The form of the membrane stress tensor

In this appendix, we will establish the form of the stress tensor given in equation (2).
To establish equation (2) let us consider a small triangle in the membrane surface, as

illustrated in figure 3. The triangle is bounded by a curve c and two other coordinate curves
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crossing each other at a point P. The outward-pointing unit normal to the ξ 1 coordinate
curve is ν(1) = t1 × n/

√
g11. The edge of the triangle formed by this curve has a length

ds(1) = √
g11 dξ 1 =

√
g22ν2 ds, where dξ 1 is the coordinate length of the curve and ds is the

length of the part of curve c that contributes to the triangle. Similarly, the outward-pointing
unit normal to the other coordinate curve is ν(2) = n × t2/

√
g22, and the length of the relevant

part of the curve is ds(2) = √
g22 dξ 2 =

√
g11ν1 ds. If we define

T 1 = −
√

g11T (ν(2)), T 2 = −
√

g22T (ν(1)), (B.1)

then the force on the ξ 1 coordinate curve is (−T 2/
√

g22) ds(1) and the force on the ξ 2 curve is
(−T 1/

√
g11) ds(2). The sum of the forces on the triangle is

T (ν) ds − T 2 ds(1)√
g22

− T 1 ds(2)√
g11

= (T (ν) − T 2ν2 − T 1ν1) ds. (B.2)

The sum of the forces should decrease at least proportionally to the area of the triangle, as the
triangle is reduced by moving curve c closer and closer to point P, in order that a force density
of normal magnitude exists. In other words, (T (ν) − T 2ν2 − T 1ν1) should approach zero as
ds approaches zero, from which equation (2) follows.
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